1. Consider the double integral +Thzs ?W‘O\CM s Wt well ~formalleted . See e wote.
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(a) (7 points) Evaluate the double integral if D is the unit disc 22 + y? < 1.
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(b) (3 points) Suppose now that D is the solid square with vertices at (£1,41). Is this double integral
greater, equal to, or less than the answer to part (a)?
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2. This problem has two parts.

(a) (6 points) Find the area of the triangle with vertices at (0,0,0), (1,1,4), and (—2,1, —2).
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(b) (4 points) Suppose a = i+j+4k and b = —2i+j—2k. If ¢ = 2i+j+ 3k, find the vector component

of ¢ that is perpendicular to the plane defined by a and b. All vectors are assumed to originate at
the origin.
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3. This problem has three parts.

(a) (2 points) Find the distance of the origin from the plane 2z + 3y — 62 = 14.
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(b) (3 points) Find the point on the plane 2z + 3y — 62 = 14 that is closest to the origin.
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(c) (5 points) The lines (z,y,2) = (2,2t + 1,t + 1) and (z,y,2) = (3t — 2,3,t + 1) do not intersect.
Find the distance between the two lines.
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4. This problem has three parts

(a) (2 points) Find 2* if u = 2* + y and o = rcosf, y = rsin.
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(b) (4 points) Find 9* if u = f(z,y) and & = rcosf, y = rsiné.
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5. Both parts ask you to reverse the order of integration.

(a) (4 points) Rewrite the integral R
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with x inner and y outer.
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(b) (6 points) Rewrite the integral
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6. Consider the helix (x,y, z) = (cost,sint, t), with ¢ being the parameter.

(a) (2 points) If ¢ is time and (cost,sint,t) is the position of a particle at time ¢, find the magnitude
of its acceleration.
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(b) (3 points) Find the length of the helix from ¢t = 0 to t = 27.
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(c) (5 points) Assume that the density (mass per unit length) of the helix from ¢t = 0 to ¢t = 27 is

constant and equal to 1. Find Z, the z-coordinate of the center of mass of the part of the helix
fromt =0 tot = 27.
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7. In each part, the curve C' is assumed to be counterclockwise. Evaluate

/ydx
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(a) (2 points) C is the circle 2% + y* = 4.
(b) (4 points) C'is the square with vertices at (£1, £1).

(c) (4 points) C' is the curve below (the arcs are semicircles):
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8. Let S be the hemispherical surface 22 + % + 22 = 1 between the planes z = 0 and z = 1. The normal
to the surface or dS is assumed to be pointing out of the center of the hemisphere.
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(a) (5 points) Find the flux

with F = zk.
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(b) (5 points) Find the flux

with F = —yi + 2j + 2k.
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9. The position vector is given by r = zi + yj + zk.

(a) (3 points) Let F = |r|?r. Find divF,
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(b) (3 points) Again let F = |r|?r. Find the outward flux
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with S being the surface of the cube with vertices at (41, +1, £1).
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(c) (4 points) Now suppose F = - Find the outward flux
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with S being the surface of the cube with vertices at (1, £1, £1).
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